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Explicit central-difference time integration is frequently used to solve the wave
equation, and the classical criterion for numerical stability is the Courant–Friedrichs–
Lewy condition. Similarly, explicit integration of a spring-mass mechanical system
has a stability condition. These conditions are derived under the assumption of con-
stant time steps. This paper demonstrates the new and perhaps surprising result that
numerical instability may occur when time steps vary, even though all steps are
substantially less than the constant step criterion.c© 1998 Academic Press

INTRODUCTION

As discussed by Richtmyer and Morton [1, pp. 260–263], the usual finite-difference
approximation for the one-dimensional wave equation∂2y/∂t2 = c2(∂2y/∂x2) is
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j + yn
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)
, (1)

wherec is the wave speed,1x is the space interval, and1t is the time step. If the Courant–
Friedrichs–Lewy (CFL) condition,c1t/1x < 1, holds, method (1) is numerically stable.
Otherwise, it is unstable. Interpreting (1) as a special case of a spring-mass system,

M ÿ + K y = 0, (2)

yields the same result, as follows. First approximate the spatial derivative of the wave
equation by central differences with constant spacing1x. The mass matrix,M , is the
identity matrix. The stiffness matrix,K , is (c/1x)2 times a tridiagonal matrix that has
diagonal entries equal to 2 and entries above and below the diagonal equal to−1.
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Solution of the eigenvalue problem(K − ω2M)ν = 0 permits diagonalization of system
(2), resulting in an uncoupled set of linear oscillators,z̈ + ω2z= 0. Thus analysis of the
stability of a time integration method for the wave equation, or any spring-mass system,
reduces to the study of a single undamped linear oscillator. If system (2) is integrated with
the explicit central-difference method, numerical stability requires

1t < 2/ωmax, (3)

whereωmax is the maximum system frequency [2, p. 204]. For the wave equation treated
as a lumped mass system,ωmax= 2c/1x [3, p. 102], which with (3) leads to the CFL
condition. The preceding results are well established for constant time steps. Varying steps
are discussed below.

CENTRAL DIFFERENCE METHOD WITH VARYING TIME STEPS

Consider the linear oscillator̈u + u = 0, whereu(τ ) is a function of the scaled time
τ = ωmaxt . Explicit central-difference time integration, written as a one-step algorithm,
corresponds to Newmark’s method withβ = 0 andγ = 1/2 [3, p. 82],

un+1 = un + pu̇n + p2ün/2

u̇n+1 = u̇n + p(ün + ün+1)/2,
(4)

where the time step isp= τn+1 − τn > 0. With the differential equation,̈un = −un, and
some algebra, (4) becomes[

un+1

u̇n+1

]
= G(p)

[
un

u̇n

]
≡
[

1 − p2/2 p
−p + p3/4 1− p2/2

][
un

u̇n

]
. (5)

The amplification matrix,G(p), has the characteristic equation

det[G(p) − λI ] = λ2 − (2 − p2)λ + 1 = 0. (6)

If p2 ≤ 4, the roots of (6) satisfy|λ| = 1. For p= 2, there is a weak numerical instability
associated with the double root,λ = −1 [1, p. 263]. Therefore, numerical stability re-
quiresp< 2. This result, which is the same as condition (3), holds when the time step is
constant.

Now consider two different time steps in sequence,p thenq, both satisfying the constant
step criterion,p< 2, q < 2. The amplification matrix is the productG(q) G(p), which has
the characteristic equation

λ2 − [2 − f2(p, q)]λ + 1 = 0, (7a)

where

f2(p, q) = (p + q)2(1 − pq/4). (7b)

In the same way as for (6), numerical stability requiresf2 < 4. Hence,f2(p, q) is called the
two-step stability function. Figure 1 shows thep-q plane with two curves corresponding to
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FIG. 1. Regions of instability defined by contours of the two-step stability functionf2(p, q). Bifurcation
point of f2 is at p = q = √

2.

f2 = 4. These curves intersect atp= q = √
2 and border two regions that contain con-

tours corresponding tof2 = 4.1 and 4.2. The stability function violatesf2 < 4 for all
pairs of time steps inside these two regions. For example,f2(1.3, 1.5) = 4.018. There-
fore, if time steps alternate in the pattern 1.3, 1.5, 1.3, 1.5,. . . , method (5) is unstable.
This is illustrated in Fig. 2 which shows computed displacements,un, for the test prob-
lem ü + u = 0, u(0) = 1, u̇(0) = 0, integrated toτ100= 140 by calculating 50 repetitions
with p= 1.3, q = 1.5. (Although the displacements appear to be zero at early times in
Fig. 2, they are in fact nonzero.)

Other examples of instability are readily found by choosing pairs of time steps from
within the regions of instability in Fig. 1. For example, Fig. 3 shows displacements when
the test problem is integrated, to essentially the same final time as before, by doing ten
repetitions with the following sequence of 10 time steps: 1.3, 1.5, 1.33, 1.45, 1.32, 1.47,
1.34, 1.48, 1.31, 1.46.

The intersection point in Fig. 1 atp= q = √
2 is a bifurcation point of f2(p, q)

in the following sense. Note thatf2(p+ ε, p− ε) = p2(4 − p2) + ε2 p2. Therefore,
f2(

√
2 + ε,

√
2 − ε) = 4 + 2ε2, which exceeds 4 forε 6= 0. In other words, the root(s)

of the polynomialg2(p) = f2(p, p) − 4 are possible bifurcation point(s) of the stability
function. From (7b),g2(p) = p2(4− p2)− 4= − (p2 − 2)2, which leads to the bifurcation
point at p= √

2.
Consider three time steps,p thenq thenr . The amplification matrix is the triple matrix

productG(r )G(q)G(p), which has the characteristic equation

λ2 − [2 − f3(p, q, r )]λ + 1 = 0, (8a)
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FIG. 2. Calculated displacements foru.. + u = 0, u(0) = 1, u.(0) = 0, integrated with the two-step pattern
1.3, 1.5.

FIG. 3. Calculated displacements forü+u = 0, u(0) = 1, u̇(0) = 0, integrated with the ten-step pattern 1.3,
1.5, 1.33, 1.45, 1.32, 1.47, 1.34, 1.48, 1.31, 1.46.
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FIG. 4. A region of instability defined by two contours of the three-step stability functionf3(p, q, 1.1) = 4.

where

f3(p, q, r ) = (p + q + r )2 − pq

4
(p + q)2 − qr

4
(q + r )2 − pr

4
(p + r )2

−pqr(p + q + r ) + pqr

24
[(p + q + r )3 − (p3 + q3 + r 3)].

(8b)

The three-step stability function violatesf3 < 4 in various regions ofp-q-r space. For
example, Fig. 4 shows a region of instability defined by two curves corresponding to
f3(p, q, 1.1) = 4. Figure 5 shows results for the test problem integrated withp = 0.9,
q = 1, r = 1.1.

It should be noted that, even thoughf2(p, q) and f3(p, q, r ) are invariant with respect to
the interchange of two variables, the amplification matrix is not, becauseG(p) andG(q) do
not commute forp 6= q. Consequently, the order of time steps is important. Figure 6 shows
results for 47 repetitions withp= 1.1, q = 1, r = 0.9. The differences between Figs. 5 and
6 are due to the reversed time steps (although the real culprit is instability due to varying
time steps). The differences appear because, in a region of instability, both roots of the
characteristic polynomial are real and negative, with one satisfying|λ| > 1 and the other
|λ| < 1. For a series of unstable time steps, the early-time results depend on the phasing of the
initial displacement and velocity. However, after many steps, the root of larger magnitude
will dominate, reflecting the inherent instability. If, instead, three time steps are chosen from
a stable region, exponential growth cannot occur and the results are much less sensitive to
time step order. For example, regardless of whether the test problem is integrated for many
hundreds of steps with the three-step pattern 1.0, 0.9, 0.8 or its reverse, 0.8, 0.9, 1.0, the
displacements oscillate between−1.054 and+1.054.
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FIG. 5. Calculated displacements forü + u = 0, u(0) = 1, u̇(0) = 0, integrated with the three-step pattern
0.9, 1.0, 1.1 (see Fig. 6).

FIG. 6. Calculated displacements forü + u = 0, u(0) = 1, u̇(0) = 0, integrated with the three-step pattern
1.1, 1.0, 0.9 (see Fig. 5).
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FIG. 7. Regions of instability defined by two contours off3(p, q, 1) = 4. Bifurcation point of f3 is at
p = q = r = 1.

The three-step bifurcation polynomial isg3(p) = f3(p, p, p) − 4 = p6 − 6p4 + 9p2 −
4 = (p2 − 4)(p2 − 1)2. Thus p= 1 is a bifurcation point satisfying 0< p < 2. Figure 7
shows f3(p, q, 1) = 4 and two regions of instability. Note that Fig. 4 does not have a bi-
furcation point; instead, there are two curves defining a single region of instability.

The stability functions, being polynomials in several variables, are continuous. Because
f3(p, q, 0) = f2(p, q), it is clear that, asr increases from zero, the regions of instability
of f3, defined by surfaces inp-q-r space, are connected continuously to those off2 in the
p-q plane.

The preceding results generalize as follows. Considern steps in sequence,p, q, r, . . . .
The n-step amplification matrix has a second-degree characteristic equation, as in (7a)
and (8a). Then-step stability functionfn(p, q, r, . . .) is a polynomial in several variables,
continuously connected tofn−1; from (6), f1(p) ≡ p2. Regions of stability and instability
are separated inn-dimensional hyperspace by hypersurfaces corresponding tofn = 4. The
bifurcation function,gn(p) = fn(p, p, p, . . .) − 4, is a polynomial of degreen in p2.
Table 1 lists the bifurcation points for 2≤ n ≤ 6. Note that these points decrease asn
increases; no lower bound on bifurcation points has been found.

As a final example, Fig. 8 shows a region of instability defined byf6(p, q, 0.3, 0.4, 0.5,

0.6) = 4. Figure 9 shows results for the test problem integrated with the six-step pattern
0.3, 0.4, 0.5, 0.5, 0.6, 0.8. Although the exponential rate of growth is slower than in previous
examples, instability is still evident.

CLOSURE

The preceding examples may seem to be abstract pathological instabilities of no real
concern but it was just such an instability that stimulated this study [4]. The instability
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TABLE 1

Bifurcation Points of the n-Step

Stability Function

n Bifurcation point

2
√

2 ∼= 1.41

3 1

4
√

2 − √
2 ∼= 0.765

5 (
√

5 − 1)/2 ∼= 0.618

6
√

2 − √
3 ∼= 0.518

occurred during a short part of a nonlinear calculation where time steps alternated in size
by roughly a factor of two; that is,1t, 1t/2, 1t, 1t/2, . . . . This pattern persisted for 67
time steps and then stopped. Erroneous results appeared later in the calculation.

The new variable-step instability identified here may help to explain previously unex-
plained numerical difficulties (e.g., see “arrested stability” in [5, p. 50]). Constant time steps
are usually assumed when doing numerical stability analyses, and constant steps are nor-
mally used when solving linear problems. However, in nonlinear computations, time steps
are typically varied below some threshold determined by a constant step criterion. The
above analysis, based on linear theory, shows that varying time steps may be a source of
numerical instability and, hence, inaccurate results. Nonlinearities may obscure these errors

FIG. 8. A region of instability defined by two contours off6(p, q, 0.3, 0.4, 0.5, 0.6) = 4. Bifurcation point

of f6 is at p = q = r = · · · =
√

2 − √
3 ∼= 0.518.
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FIG. 9. Calculated displacements forü + u = 0, u(0) = 1, u̇(0) = 0, integrated with the six-step pattern 0.3,
0.4, 0.5, 0.5, 0.6, 0.8.

but they cannot eliminate them. It is worth noting that integrating a variable-stiffness system
with constant time steps resembles integrating a constant-stiffness system with varying time
steps.

The speed and capacity of computers continue to increase rapidly, and highly complex
computations are now commonplace. These computations often involve either adaptive
mesh techniques (where elements are either subdivided or combined and time steps are
changed accordingly) or subcycling (where different elements have different and varying
time steps based on material state) or both. The likelihood of encountering variable-step in-
stabilities can only increase in the future. What is needed are methods that avoid variable-step
instabilities but have the efficiency of the central difference method. Some unconditionally
stable implicit methods may have the first attribute. It is well known that they do not have
the second. Implicit–explicit methods have the potential for both. Research in this direction
is in progress (see Appendix).

APPENDIX A: AVOIDING VARIABLE-STEP INSTABILITIES

This appendix summarizes some results and ideas on methods for avoiding variable-
step instabilities. So far, no satisfactory alternative has been found to the explicit central
difference method for solving nonlinear mechanics problems.

Consider the unconditionally stable Newmark method withβ = 1/2 andγ = 1/2,

un+1 = un + pu̇n + p2ün+1/2

u̇n+1 = u̇n + p(ün + ün+1)/2,
(A.1)

where the time step isp = τn+1 − τn > 0. With the differential equation,̈un = −un, and
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some algebra, (A.1) becomes[
un+1

u̇n+1

]
= H(p)

[
un

u̇n

]
≡ 1

1 + p2/2

[
1 p

−p − p3/4 1

][
un

u̇n

]
. (A.2)

The amplification matrix,H(p), has the characteristic equation

det [H(p) − λI ] = λ2 − [2 − h1(p)]λ + 1 = 0, (A.3)

where

h1(p) = p2

1 + p2/2
. (A.4)

The one-step stability function,h1, satisfies the stability conditionh1 < 4 for any time step
p > 0, which it must since the method is unconditionally stable.

Consider two time steps in sequence,p thenq. The amplification matrix,H(q)H(p),
has the characteristic equation

λ2 − [2 − h2(p, q)]λ + 1 = 0, (A.5)

where

h2(p, q) = (p + q)2(1 + pq/4)

(1 + p2/2)(1 + q2/2)
. (A.6)

Study of (A.6) shows that the stability condition,h2 < 4, is satisfied ifp < 2, q < 2, the
limit of the explicit central difference method. This is acceptable since it shows that (A.1)
prevents two-step instabilities for time steps of interest in wave propagation calculations.
It is conjectured that (A.1) would have prevented the two-step instability associated with
alternating time steps,1t, 1t/2, 1t, 1t/2, . . . , mentioned in the Closure. One way to
check this would be to implement (A.1) instead of the explicit central difference method.
This means implementing an implicit method which is quite inefficient compared to the
explicit method. Alternatives such as implicit–explicit (also called partitioned or semi-
implicit) methods might then be explored. However, before pursuing this path, it is prudent
to look forn-step instabilities of (A.1) for highern.

Instead of deriving analytic expressions for highern, it is simpler to do numerical searches
by computing the stability functionhn(p, q, r, . . .) from hn = 2 − trace(An), whereAn

is the amplification matrixAn(p, q, r, . . .) = . . . H(r ) H(q) H(p). Doing this for (A.1)
shows that the three-step stability function has a bifurcation point atp = q = r = √

2.
Contour plots ofh3(p, q,

√
2) confirm this. Thus (A.1) has three-step instabilities for time

steps of interest in wave propagation calculations, an unsatisfactory result. It therefore seems
likely that bifurcation points exist at smaller time steps for highern, although this has not
been confirmed.

What seems desirable is a method that preventsn-step instabilities for alln. Consider the
following unconditionally stable method based on the exact solution ofü + u = 0,[

un+1

u̇n+1

]
= E(p)

[
un

u̇n

]
≡
[

cosp sin p
−sin p cosp

][
un

u̇n

]
. (A.7)
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The one-step stability function of (A.7) ise1(p) = 2− trace(E(p)) = 2(1− cosp), which
satisfiese1 < 4 for all p (except odd multiples ofπ which cannot cause weak instabilities
since (A.7) is exact). The two-step amplification matrix isE(q)E(p) which equalsE(p+q)

by trigonometric identities. This can be extended by induction for any number of time steps
and it is simple to show that (A.7) is unconditionally stable with respect to time step
variations for any number of time steps, as would expected since (A.7) is based on the exact
solution. Ways are being explored to extend (A.7) to more than one degree of freedom and,
then, to an efficient method for nonlinear systems.
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