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Explicit central-difference time integration is frequently used to solve the wave
equation, and the classical criterion for numerical stability is the Courant—Friedrichs—
Lewy condition. Similarly, explicit integration of a spring-mass mechanical system
has a stability condition. These conditions are derived under the assumption of con-
stant time steps. This paper demonstrates the new and perhaps surprising result that
numerical instability may occur when time steps vary, even though all steps are
substantially less than the constant step criteriafi99s Academic Press

INTRODUCTION

As discussed by Richtmyer and Morton [1, pp. 260-263], the usual finite-differen
approximation for the one-dimensional wave equatibyy at?> = c?(d%y/dx?) is
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wherec is the wave speedyx is the space interval, anslt is the time step. If the Courant—
Friedrichs—Lewy (CFL) conditiomgAt/AX < 1, holds, method (1) is numerically stable.
Otherwise, it is unstable. Interpreting (1) as a special case of a spring-mass system,

My + Ky =0, )

yields the same result, as follows. First approximate the spatial derivative of the w:
equation by central differences with constant spacig The mass matrixM, is the
identity matrix. The stiffness matrixg, is (c/Ax)? times a tridiagonal matrix that has
diagonal entries equal to 2 and entries above and below the diagonal egual to
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Solution of the eigenvalue proble(X — »?>M)v =0 permits diagonalization of system
(2), resulting in an uncoupled set of linear oscillatd@rs; w?z=0. Thus analysis of the
stability of a time integration method for the wave equation, or any spring-mass systt
reduces to the study of a single undamped linear oscillator. If system (2) is integrated v
the explicit central-difference method, numerical stability requires

At < 2/wmax, (3

wherewmax is the maximum system frequency [2, p. 204]. For the wave equation treat
as a lumped mass systemmax=2¢/AX [3, p. 102], which with (3) leads to the CFL
condition. The preceding results are well established for constant time steps. Varying s
are discussed below.

CENTRAL DIFFERENCE METHOD WITH VARYING TIME STEPS

Consider the linear oscillatdai +u=0, whereu(r) is a function of the scaled time
T = wmaxt. EXplicit central-difference time integration, written as a one-step algorithn
corresponds to Newmark’s method wigh=0 andy =1/2 [3, p. 82],

Un+1 = Un + pUn + p?Un/2

. . L 4)
Un+1 = Un + P(Un + Uny1) /2,
where the time step ip = th.1 — h > 0. With the differential equatiorij, = —up, and
some algebra, (4) becomes
Uny1 Un 1-p?/2 p Hun]
. =G = . 5
{UMJ (p)[un} {—p—i— p/4 1—p?/2]|un ®)
The amplification matrixG(p), has the characteristic equation
det[G(p) —Al]=22—@2—-pHr+1=0. (6)

If p? < 4, the roots of (6) satisfyx| = 1. For p=2, there is a weak numerical instability
associated with the double roat, = —1 [1, p. 263]. Therefore, numerical stability re-
quiresp < 2. This result, which is the same as condition (3), holds when the time stef
constant.

Now consider two different time steps in sequeneenq, both satisfying the constant
step criterionp < 2, g < 2. The amplification matrix is the produ@t(q) G(p), which has
the characteristic equation

A2 —[2— fap, L +1=0, (7a)
where

f2(p, @) = (p+ M*(1 — pa/4). (7b)

In the same way as for (6), numerical stability requifes: 4. Hence,f2(p, q) is called the
two-step stability function. Figure 1 shows theg plane with two curves corresponding to
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FIG. 1. Regions of instability defined by contours of the two-step stability functigip, q). Bifurcation
point of f,is atp = q = v/2.

f,=4. These curves intersect pt=q=+/2 and border two regions that contain con-
tours corresponding td, =4.1 and 4.2. The stability function violatef <4 for all
pairs of time steps inside these two regions. For examplg,.3, 1.5) =4.018. There-
fore, if time steps alternate in the pattern 1.3, 1.5, 1.3,.1.5,method (5) is unstable.
This is illustrated in Fig. 2 which shows computed displacemantsfor the test prob-
lemi+u=0, u(0)=1, u(0)=0, integrated ta;po= 140 by calculating 50 repetitions
with p=1.3, g=1.5. (Although the displacements appear to be zero at early times
Fig. 2, they are in fact nonzero.)

Other examples of instability are readily found by choosing pairs of time steps frc
within the regions of instability in Fig. 1. For example, Fig. 3 shows displacements wh
the test problem is integrated, to essentially the same final time as before, by doing
repetitions with the following sequence of 10 time steps: 1.3, 1.5, 1.33, 1.45, 1.32, 1.
1.34,1.48,1.31, 1.46.

The intersection point in Fig. 1 ap=q=+/2 is a bifurcation point offx(p, q)
in the following sense. Note thaf,(p+e, p—e¢)=p?(4 — p? +&?p?. Therefore,
f2(v/2 4 &,+/2 — €) =4 + 2¢2, which exceeds 4 foe #0. In other words, the root(s)
of the polynomialg,(p) = f2(p, p) — 4 are possible bifurcation point(s) of the stability
function. From (7b)gx(p) = p?(4 — p?) — 4= — (p? — 2)?, which leads to the bifurcation
point atp = /2.

Consider three time stepp,theng thenr. The amplification matrix is the triple matrix
productG(r)G(q)G(p), which has the characteristic equation

2 —[2 - fa(p,q,NIA+1=0, (8a)
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FIG. 2. Calculated displacements ftéir+ u = 0, u(0) = 1, u(0) = 0, integrated with the two-step pattern
1.3,1.5.
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FIG. 3. Calculated displacements for-u = 0, u(0) = 1, u(0) = 0, integrated with the ten-step pattern 1.3,
1.5,1.33,1.45,1.32,1.47,1.34,1.48, 1.31, 1.46.
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FIG. 4. Aregion of instability defined by two contours of the three-step stability functigp, g, 1.1) = 4.

where

r r
fap g =(+q+12 - p+a?- Lq+n2- P ptry
4 4 4 (8b)

"
—par(p+q+r) + %[(p+q+r)3— (PP +q®+rd)].

The three-step stability function violatefs < 4 in various regions ofp-gq-r space. For
example, Fig. 4 shows a region of instability defined by two curves corresponding
fa(p, g, 1.1) = 4. Figure 5 shows results for the test problem integrated with 0.9,
qg=1r =11

It should be noted that, even thoudp, q) and f3(p, g, r) are invariant with respect to
the interchange of two variables, the amplification matrix is not, bedagpgandG(q) do
not commute foip # g. Consequently, the order of time steps is important. Figure 6 shov
results for 47 repetitions withb=1.1, q=1, r =0.9. The differences between Figs. 5 and
6 are due to the reversed time steps (although the real culprit is instability due to vary
time steps). The differences appear because, in a region of instability, both roots of
characteristic polynomial are real and negative, with one satisfying 1 and the other
|A| < 1. Foraseries of unstable time steps, the early-time results depend on the phasing ¢
initial displacement and velocity. However, after many steps, the root of larger magnitt
willdominate, reflecting the inherent instability. If, instead, three time steps are chosen fr
a stable region, exponential growth cannot occur and the results are much less sensiti
time step order. For example, regardless of whether the test problem is integrated for n
hundreds of steps with the three-step pattern 1.0, 0.9, 0.8 or its reverse, 0.8, 0.9, 1.0
displacements oscillate betweenl.054 and+1.054.
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FIG. 5. Calculated displacements for+ u = 0, u(0) = 1, u(0) = 0, integrated with the three-step pattern
0.9, 1.0, 1.1 (see Fig. 6).
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FIG. 6. Calculated displacements far+ u = 0, u(0) = 1, u(0) = 0, integrated with the three-step pattern
1.1, 1.0, 0.9 (see Fig. 5).
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FIG. 7. Regions of instability defined by two contours &f(p, q, 1) = 4. Bifurcation point of f; is at
p=qg=r=1.

The three-step bifurcation polynomialdgs(p) = fa(p, p, p) — 4 = p® —6p*+9p? —

4 = (p? — 4)(p? — 12 Thusp=1is a bifurcation point satisfying & p < 2. Figure 7
shows f3(p, g, 1) = 4 and two regions of instability. Note that Fig. 4 does not have a b
furcation point; instead, there are two curves defining a single region of instability.

The stability functions, being polynomials in several variables, are continuous. Beca
fa(p,d, 0) = fa(p, q), it is clear that, as increases from zero, the regions of instability
of f3, defined by surfaces ip-g-r space, are connected continuously to thosé,dfi the
p-q plane.

The preceding results generalize as follows. Congid&eps in sequence, q, 1, ....
The n-step amplification matrix has a second-degree characteristic equation, as in
and (8a). Then-step stability functionf,(p, g, r, . ..) is a polynomial in several variables,
continuously connected tf,_1; from (6), f1(p) = p?. Regions of stability and instability
are separated in-dimensional hyperspace by hypersurfaces correspondifigto4. The
bifurcation function,g,(p) = f.(p, p, p,...) — 4, is a polynomial of degrea in p°.
Table 1 lists the bifurcation points for 2 n < 6. Note that these points decreasenas
increases; no lower bound on bifurcation points has been found.

As a final example, Fig. 8 shows a region of instability definedfyp, g, 0.3, 0.4, 0.5,
0.6) = 4. Figure 9 shows results for the test problem integrated with the six-step patt
0.3,0.4,0.5,0.5, 0.6, 0.8. Although the exponential rate of growth is slower than in previc
examples, instability is still evident.

CLOSURE

The preceding examples may seem to be abstract pathological instabilities of no
concern but it was just such an instability that stimulated this study [4]. The instabili
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TABLE 1
Bifurcation Points of the n-Step
Stability Function

n Bifurcation point

J2=141
1

\2— /20765

(/5-1)/2= 0618

o 0o b~ W N

2— /30518

occurred during a short part of a nonlinear calculation where time steps alternated in
by roughly a factor of two; that isiat, At/2, At, At/2, ... . This pattern persisted for 67
time steps and then stopped. Erroneous results appeared later in the calculation.

The new variable-step instability identified here may help to explain previously une
plained numerical difficulties (e.g., see “arrested stability” in [5, p. 50]). Constant time ste
are usually assumed when doing numerical stability analyses, and constant steps are
mally used when solving linear problems. However, in nonlinear computations, time st
are typically varied below some threshold determined by a constant step criterion. -
above analysis, based on linear theory, shows that varying time steps may be a sour
numerical instability and, hence, inaccurate results. Nonlinearities may obscure these e
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FIG. 8. Aregion of instability defined by two contours é§(p, g, 0.3, 0.4, 0.5, 0.6) = 4. Bifurcation point
of fgisatp=q=r=--.-=14/2—+/3=0518.



NUMERICAL INSTABILITY 429

V/\VA/\/\/\/\/\M/\/\
A

o

Displacement

8 | | | | | |
0 20 40 60 80 100 120 140

Scaled Time

FIG.9. Calculated displacements for-u = 0, u(0) = 1, u(0) = 0, integrated with the six-step pattern 0.3,
0.4,0.5,0.5,0.6,0.8.

but they cannot eliminate them. Itis worth noting that integrating a variable-stiffness syst
with constant time steps resembles integrating a constant-stiffness system with varying
steps.

The speed and capacity of computers continue to increase rapidly, and highly com|
computations are now commonplace. These computations often involve either aday
mesh techniques (where elements are either subdivided or combined and time step
changed accordingly) or subcycling (where different elements have different and vary
time steps based on material state) or both. The likelihood of encountering variable-ste,
stabilities can only increase inthe future. What is needed are methods that avoid variable:
instabilities but have the efficiency of the central difference method. Some uncondition:
stable implicit methods may have the first attribute. It is well known that they do not ha
the second. Implicit—explicit methods have the potential for both. Research in this direct
is in progress (see Appendix).

APPENDIX A: AVOIDING VARIABLE-STEP INSTABILITIES

This appendix summarizes some results and ideas on methods for avoiding varie
step instabilities. So far, no satisfactory alternative has been found to the explicit cen
difference method for solving nonlinear mechanics problems.

Consider the unconditionally stable Newmark method its 1/2 andy = 1/2,

Unt1 = Un + PUn + P?Unsa/2
(A.1)
l-:|n+1 = L.Jn + p(un + Un+1)/2’

where the time step ip = 1,41 — 7, > 0. With the differential equatiory, = —u,, and
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some algebra, (A.1) becomes

el R P e TS| o
The amplification matrixH (p), has the characteristic equation
det[H(p) —Al] =22 —[2—hy(p)]r+1=0, (A.3)
where

p2
h S — A4
1(p) = 7 T2 (A.4)
The one-step stability functiohy, satisfies the stability conditidm < 4 for any time step
p > 0, which it must since the method is unconditionally stable.
Consider two time steps in sequengethenq. The amplification matrixH (q) H (p),

has the characteristic equation
2 —[2—ha(p, A +1=0, (A.5)
where

(p+ D21+ pa/d)
(14 p?/2)(1+9?%/2)°

ha(p. ) = (A.6)

Study of (A.6) shows that the stability conditidmy < 4, is satisfied ifp < 2,q < 2, the
limit of the explicit central difference method. This is acceptable since it shows that (A.
prevents two-step instabilities for time steps of interest in wave propagation calculatic
It is conjectured that (A.1) would have prevented the two-step instability associated w
alternating time stepsit, At/2, At, At/2, ..., mentioned in the Closure. One way to
check this would be to implement (A.1) instead of the explicit central difference methc
This means implementing an implicit method which is quite inefficient compared to t
explicit method. Alternatives such as implicit—explicit (also called partitioned or sern
implicit) methods might then be explored. However, before pursuing this path, it is prud
to look for n-step instabilities of (A.1) for highan.

Instead of deriving analytic expressions for highgt is simpler to do numerical searches
by computing the stability functioh,(p, q,r, ...) from h, = 2 — trace(A,), where A,
is the amplification matrixA,(p, q,r,...) = ... H() H(q) H(p). Doing this for (A.1)
shows that the three-step stability function has a bifurcation poiptatq = r = /2.
Contour plots ohs(p, g, +/2) confirm this. Thus (A.1) has three-step instabilities for time
steps of interest in wave propagation calculations, an unsatisfactory result. It therefore se
likely that bifurcation points exist at smaller time steps for highealthough this has not
been confirmed.

What seems desirable is a method that prevesstep instabilities for alh. Consider the
following unconditionally stable method based on the exact solutigrHefs = 0,

Unyt | Un cosp sinp || uy
|:Un+1:| _E(p){un } [—sinp cospHun]' (A7)
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The one-step stability function of (A.7) &(p) = 2 —tracg E(p)) = 2(1 — cosp), which
satisfiese; < 4 for all p (except odd multiples ot which cannot cause weak instabilities
since (A.7) is exact). The two-step amplification matri€i&)) E (p) which equal€(p+Qq)

by trigonometric identities. This can be extended by induction for any number of time ste
and it is simple to show that (A.7) is unconditionally stable with respect to time st
variations for any number of time steps, as would expected since (A.7) is based on the €
solution. Ways are being explored to extend (A.7) to more than one degree of freedom
then, to an efficient method for nonlinear systems.
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